

Клапана с автоматическим гидравлическим управлением

Клапана с автоматическим гидравлическим управлением

ОБЛАСТИ ПРИМЕНЕНИЯ КЛАПАНОВ ДОРОТ

ВОДОСНАБЖЕНИЕ ИКАНАЛИЗАЦИЯ

Клапана Дорот спроектированы чтобы решать все необходимые задачи систем водоснабжения, водоподготовки и водоотведения: управление давлением, регулировка расхода, уменьшение утечек, управление насосами, поддержание заданного уровня в резервуарах, предотвращение гидроударов.

ПОЛИВ

Дорот ведущая фирма области автоматических клапанов, применяемых в системах орошения теплиц, открытых площадей городского озеленения. И Инновационная линейка продукции производится из самых разных материалов: литой и высокопрочный чугун, обычная и нержавеющая сталь, бронза, полиамид, ПВХ.

Дорот предлагает решения для высотных зданий: регулировка давления и расхода, предотвращение гидроударов, управление резервуарами.

ПОЖАРОТУШЕНИЕ

Дорот производит широкую номенклатуру клапанов для различных систем пожаротушения, имеющих стандарт UL.

СИСТЕМЫ ФИЛЬТРАЦИИ И ВОДОПОДГОТОВКА

Дорот производит различные типы клапанов для промывки обратным потоком, применяемых в системах фильтрации. Клапана изготавливаются из долговечных материалов и могут применятся при очистке воды с агрессивными добавками.

СОДЕРЖАНИЕ

ОБЩАЯ ИНФОРМАЦИЯ	4
Обзор	4
Характеристики	4
ТЕХНИЧЕСКИЕ ДАННЫЕ	5
Техническая спецификация	5
Материалы	5
Основные принципы работы	6
Типичный график клапана поддержания давления	10
Данные о кавитации	11
Размеры и веса моделей 30/31	12
График потерь давления моделей 30/31	13
Размеры и веса модели 32	14
График потерь давления модели 32	15
Детали клапана	16
ФУНКЦИИ УПРАВЛЕНИЯ	17
Дистанционно управляемые и с электронным управлением	17
Регулировка давления	17
Управление расходом	17
Управление уровнем жидкости	18
Управление насосами и предотвращение гидроударов	19
Пожаротушение	20
ПИЛОТНЫЕ КЛАПАНА И АКСЕССУАРЫ	21
ДРУГАЯ ПРОДУКЦИЯ ДОРОТ	23

ОБЩАЯ ИНФОРМАЦИЯ

Обзор

Клапана серии 300 фирмы Дорот - новейшая линия клапанов с автоматическим управлением. Клапана созданы в соответствии с требованиями к особо ответственным системам водоснабжения. Специалисты Дорот заложили в эту современную серию технические возможности, значительно опережающие аналогичную продукцию, имеющуюся на рынке.

Данный каталог поможет Вам выбрать оптимальный вариант клапана серии 300.

Характеристики клапанов серии 300:

- Возможность регулировки при расходах, близких к нулю, полностью устраняет потребность в специальном устройстве для низкого расхода (дросселирующей заглушке) или в байпасном кране низкого расхода. Вместе с тем обеспечивается очень низкая потеря давления при полностью открытом клапане.
- Базовые модели клапанов пригодны для обеспечения любых функций управления.
 Специальные регуляторы обеспечивают выполнение требуемых задач.
- Размеры клапанов (включая расстояние между фланцами) соответствуют стандарту ISO, что позволяет быструю и легкую смену старого оборудования без модификации трубопроводов.
- Клапан имеет внутреннюю "плавающую" ось. Такая конструкция обеспечивает отсутствие трения и плавную работу клапана. Нет необходимости в уплотнении оси и, соответственно, нет протечек. Простое внутреннее устройство обеспечивает легкое обслуживание в полевых условиях.
- Клапан имеет жесткое уплотнение, которое центрируется с двух сторон и работает почти без трения.

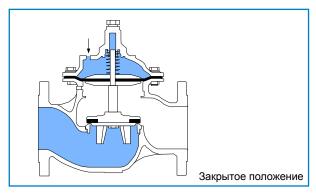
- Корпус клапана изготавливается из высокопрочного чугуна, устойчивого к большим механическим и гидравлическим нагрузкам.
- Стандартный клапан с одиночной камерой управления обеспечивает бесперебойную работу и точное регулирование. Если возникает необходимость в двойной камере управления, устанавливается дополнительный разделительный диск без демонтажа клапана из трубопровода (зарегистрированный патент Дорот).
- Клапана комплектуются посадочным местом из нержавеющей стали или алюминиево-бронзового сплава. Посадочные места обеспечивают высокую износоустойчивость, полное уплотнение и легко заменяются в полевых условиях.
- Уменьшение скорости в конце процесса закрытия предотвращает повреждения, которые могут произойти от гидроудара.
- Механический индикатор положения с "плавающим" креплением обеспечивает плавное перемещение, отсутствуют износ стержня и его уплотнения.
- Встроенный фильтр с автоматической промывкой в управляющей линии позволяет отказаться от внешних фильтров.

Техническая спецификация

Параметр	Стандарт	Опция
Подсоединения	Фланцы ISO 7005-1 или ANSI B16Резьба BSP или NPT	• Фланцы AS10, JIS B22, ABNT и другие
Рабочее давление	• Модель 30: 0.5 - 16 бар • Модель 31, 32: 0.5 - 25 бар	 Минимальное давление 0 с пружиной, помогающей открытию 0.2 бар минимальное давление без пружины Примечание: обе возможности
		предусматривают использование внешнего давления для закрытия
Максимальная температура воды	• 80°C	• 95-130 °C

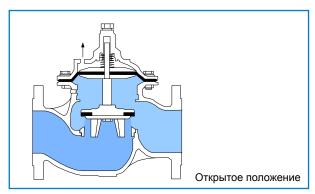
Материалы

Деталь	Стандарт	Опция
Корпус и крышка	Высокопрочный чугун GGG50 (ASTM A-536)	Сталь A-216 WCB Бронза, морская бронза Нержавеющая сталь SST CF8M (316) Никель-алюминиевая бронза Другое
Основные внутренние детали	SST, бронза либо сталь с покрытием	SST 316, HASTELLOY, SMO, DU- PLEX
Пружина	SST 302	SST 316, INCONNEL
Диафрагма	EPDM армированная нейлоном (сертификаты WRAS и NSF)	NBR
Уплотнения	NBR (Buna-N)	EPDM Viton
Покрытие	Полиэстер RAL 5010	FBE RAL 5010 Полиэстер RAL3000 (пожаротушение красный) С защитой от UV FBE RAL3000 Rilsan (Nylon) Halar
Контур управления: фитинги и пилоты	Бронза	SST 304 SST 316
Контур управления: импульсные трубки	Высокопрочный армированный нейлон Полипропилен	Медь SST 316



Принцип работы базовой модели Открытие-закрытие

Стандартный (однокамерный) клапан


Закрытое положение: Управляющее давление (берется из трубопровода) через управляющее устройство подается в камеру управления (над диафрагмой).

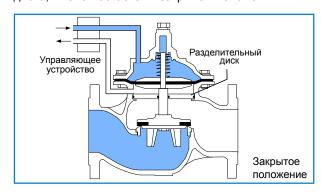
С одной стороны давление в линии толкает уплотняющий диск в положение "открыто", с другой то же давление в управляющей камере толкает диафрагму в положение "закрыто". Поскольку площадь диафрагмы больше площади уплотняющего диска, клапан остается в закрытом положении.

Открытое положение: Управляющее устройство сбрасывает давление из управляющей камеры. Давление в линии поднимает уплотняющий диск в положение "открыто", и жидкость может течь через клапан.

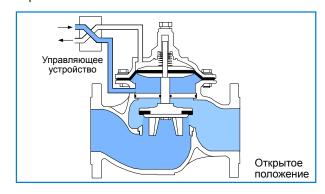
Когда клапан открыт, давление на выходе из него приложено к нижней поверхности диафрагмы

Двухкамерный клапан (версия D)

Двойная камера создается добавлением разделяющего диска между диафрагмой и уплотнением. При этом под диафрагмой образуется вторая управляющая камера, позволяющая работу клапана при низком давлении в системе и обеспечивающая быструю реакцию.


Реакция при изменении условий будет быстрой, т.к.

перемещение диафрагмы не ограничено количеством воды в соответствующей части управляющей камеры. Скорость закрытия двухкамерного клапана замедляется к концу процесса закрытия. Это уменьшает опасность резких скачков давления в коротких линиях.


Закрытое положение: Управляющее давление (берется из трубопровода) через управляющее устройство подается в верхнюю камеру управления (над диафрагмой).

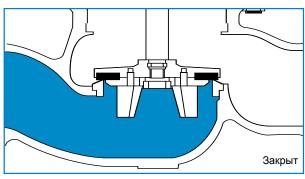
Нижняя камера опорожняется.

С одной стороны давление в линии толкает уплотняющий диск в положение "открыто", с другой то же давление в управляющей камере толкает диафрагму в положение "закрыто". Поскольку площадь диафрагмы больше площади уплотняющего диска, клапан остается в закрытом положении.

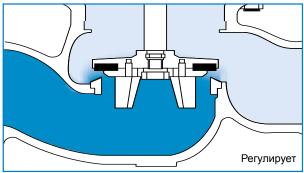
Открытое положение: Управляющее устройство сбрасывает давление из верхней управляющей камеры. Давление в линии поднимает уплотняющий диск в положение "открыто", и жидкость может течь через клапан.

Регулирующий режим работы

Общие положения

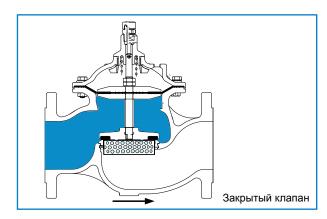

Расположение уплотняющего диска на маленьком расстоянии от посадочного места (меньше 1/4 диаметра посадочного места) создает турбуленцию и трение, которые приводят к потерям энергии в жидкости, текущей через клапан. Как результат:

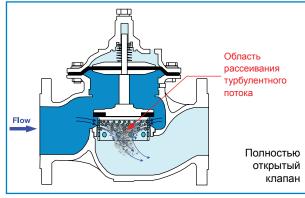
- Снижается расход и давление на выходе
- Увеличивается давление на входе


Положение уплотняющего диска диктуется количеством жидкости в верхней камере управления. В свою очередь это количество определяется управляющим устройством.

Управляющее устройство может быть ручным, электрическим (соленоидный клапан) или гидравлическим (пилотный регулятор, гидравлическое реле). Все типы управляющих устройств могут работать как со стандартным (однокамерным), так и с двухкамерным клапаном.

Регулирующий режим при стандартном (однокамерном) клапане.



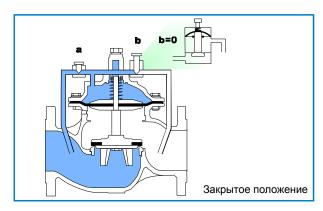


Регулировка при большой разности давления

Клапана серии S-300 имеют исключительно высокую устойчивость к кавитации. Это качество подтверждено обширными тестами, произведенными независимыми лабораториями с Европе и США. Ограничение рабочих параметров, как определено этими тестами, может быть рассчитано для любых конкретных условий работы. При рабочих параметрах, выходящих за безопасные условия работы, применяется специальная антикавитационная вставка. Эта версия клапана обозначается добавкой буквы F (например, 30F Ду100 Ру16). При этом разность между давлением на входе и выходе может быть любой. Высокая энергия турбулентного потока рассеивается внутри вставки из нержавеющей стали, имеющей высокую устойчивость к кавитации, и не касается стенок клапана.

Двухходовое управляющее устройство

Двухходовое управляющее устройство устанавливается в контуре управления и подключается ко входу и выходу клапана через управляющую камеру.


В управляющей линии при этом имеются два ограничителя:

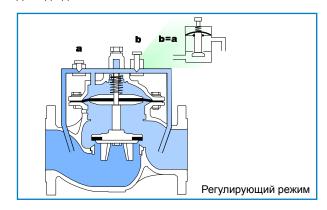
"а" – калиброванное отверстие или игольчатый кран, зафиксированный в определенном положении

"b" – регулирующее устройство ("пилотный регулятор"), проход в котором изменяется от полностью закрытого (b=o) до полностью открытого (когда b>a).


Объем жидкости в камере управления определяется соотношением пощади проходов "а" и "b", или, фактически, степенью открытия прохода "b", т.к. проход "а" фиксирован.

Закрытое положение: Пилотный регулятор "чувствует", что давление после клапана выше установленного, и закрывает проход "b". Через проход "a" жидкость попадает в управляющую камеру. Диафрагма движется вниз, толкая уплотняющий диск в положение "закрыто"

Открытое положение: Пилотный регулятор "чувствует", что давление после клапана ниже установленного, и полностью открывает проход "b" (b>a). Жидкость, поступающая в командный контур от входа в клапан, течет непосредственно на выход из клапана. При этом управляющая камера опорожняется до тех пор, пока давление в ней не сравняется с давлением на выходе.

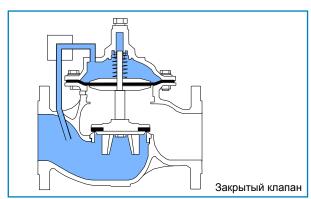

Давление в линии толкает уплотняющий диск в положение "открыто"

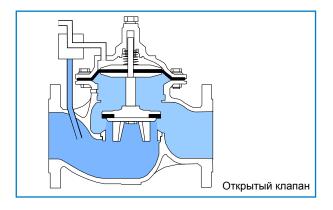
Регулирующий режим: Пилотный регулятор устанавливается на требуемое давление.

Когда давление на выходе достигает требуемого, площадь проходов "а" и "b" уравнивается ("b"="a"). Жидкость, поступающая в командный контур от входа в клапан, течет непосредственно на выход из клапана. При этом объем жидкости в управляющей камере постоянен, диафрагма и уплотняющий диск находятся в фиксированной позиции.

Любое изменение давления на выходе из клапана изменяет баланс "b"="а". Это изменение добавляет или убавляет жидкость в управляющую камеру, приоткрывая или частично закрывая уплотняющий диск до достижения баланса "b"="а" вновь.

Уплотняющий диск не открывается полностью, т.к. пилотный регулятор не позволяет полное опорожнение управляющей камеры.

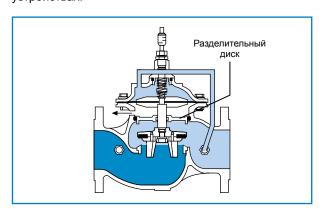

Двухходовой пилотный регулятор является стандартным для большинства клапанов, регулирующих давление.



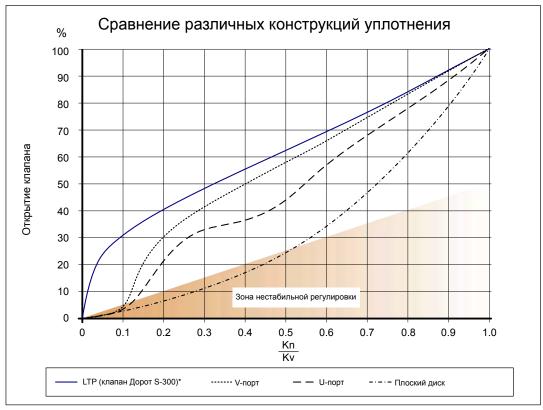
Трехходовое управляющее устройство

Трехходовое управляющее устройство представляет собой небольшой селекторный кран, который:

- а. Обеспечивает доступ управляющей жидкости в управляющую камеру клапана (начиная процесс закрытия) или
- б. Обеспечивает слив жидкости из управляющей камеры в атмосферу (начиная процесс открытия). Иногда трехходовые селекторные краны имеют дополнительное положение, предотвращающее доступ жидкости в управляющую камеру или ее слив. При этом клапан находится в фиксированном ("открытом" или "закрытом") положении. Такое управление используется в клапанах, работающих в простом режиме "открыть-закрыть", либо в регуляторах для обеспечения специальных режимов. Трехходовой регулятор позволяет полное открытие клапана, обеспечивая минимальные потери давления. Трехходовой регулятор необходим, когда для используется внешний управления клапаном источник давления (вода или воздух), либо когда в управляющей жидкости есть абразивы.

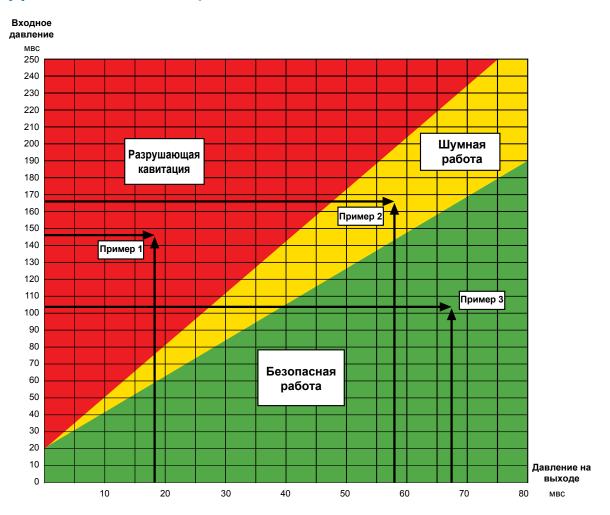


Пропорциональное снижение давления


Двухкамерный клапан, у которого управляющая камера постоянно соединена с трубопроводом после клапана.

Баланс гидравлических сил, создаваемых высоким давлением, приложенным к небольшой поверхности диска уплотнения и низким давлением, приложенным к поверхности диафрагмы, обеспечивает постоянное снижение давления в соотношении примерно 1:3 без необходимости в дополнительных управляющих устройствах.

Типичный график клапана поддержания давления



^{*}Данные проверки независимой лабораторией

Данные о кавитации

График кавитации

Ограничения по условиям работы

График, приведенный выше, устанавливает ограничения для клапанов, работающих при значительной разности давления между входом и выходом.

При таких условиях возможен шум при работе клапана и повреждение его корпуса.

Как пользоваться графиком:

Определите максимальное динамическое давление на входе в клапан

Отложите эту величину на вертикальной оси и проведите горизонтальную линию от этой точки.

Отложите на горизонтальной оси требуемое давление на выходе из клапана.

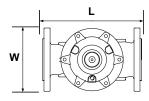
Проведите вертикальную линию из этой точки.

Точка пересечения этих линий определяет кавитационные характеристики работы клапана.

- В случае, если точка находится в красной зоне (пример I), то клапан может быть поврежден за короткое время.
- В случае, если точка находится в желтой зоне (пример II), то клапан может создавать шум свыше 80 Дв
- В случае, если точка находится в зеленой зоне (пример III), то клапан работает в безопасных условиях и не шумит.

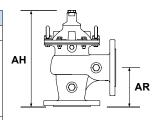
Примечание: Приведенные выше данные основаны на опытах, проведенных в лабораториях государственного университета штат Юта, США и Delft Hydraulic Laboratories, Голландия.

Размеры и веса

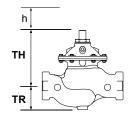

Модель 30 (Ру16) / Модель 31 (Ру25)

Прямые фланцевые клапана

psimble day								
Размер клапана	40 (1 ¹ / ₂ ")	50 (2")	65 (2 ¹ / ₂ ")	80 (3")	100 (4")	150 (6")	200 (8")	250 (10")
	ММ	ММ	ММ	ММ	мм	ММ	мм	ММ
L	230	230	292	310	350	480	600	730
L (ANSI#300)	230	235	292	345	400	525	605	790
Н	185	185	185	230	240	330	390	520
h**	140	140	140	170	180	230	300	390
W	153	170	185	200	235	330	415	525
R	82.5	82.5	92.5	100	110	142.5	172.5	205
Вес, кг*	12	12	13	22	37	80	157	245
Объем управл. камеры, л	0.1	0.1	0.1	0.3	0.7	1.5	4.3	9.7


h	
Н	
R	

Размер клапана	300 (12")	350 (14")	400 (16")	450 (18")	500 (20")	600 (24")	700 (28")	800 (32")
	MM	ММ						
L	850	980	1100	1200	1250	1450	1650	1850
L (ANSI#300)	910	980	1100	1200	1250	1450	1650	1850
Н	635	635	855	855	855	1574	1675	1675
h**	450	450	590	600	600	740	860	860
W	610	610	850	850	850	1100	1100	1090
R	230	272	290	310	357.5	490	498	603
Вес, кг*	405	510	822	945	980	1950	2070	2600
Объем управл. камеры, л	18.6	18.6	50	50	50	84	84	84


Угловые клапана

Размер клапана	50 (2")	80 (3")	100 (4")	150 (6")	200 (8")	250 (10")
	ММ	мм	ММ	ММ	ММ	ММ
AL	208	250	295	405	505	585
AH	240	415	445	570	635	832
AW	170	200	235	330	415	495
AR	107	138	147	180	302	338
AB	125	150	173	240	300	338
Вес, кг*	12	20	37	76	150	234

Прямые резьбовые клапана

Размер клапана	40 (1 ¹ / ₂ ") TH	50 (2") TH
	ММ	ММ
TL	215	215
TH	185	185
h	140	140
TW	129	129
TR	62	62
Вес, кг*	7	7

Стандарты подключения (для Ру16 или Ру25)

ISO 2084, 2441, 5752 ANSI B16, AS2129, JIS B22

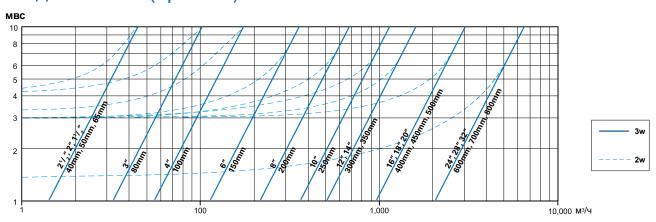
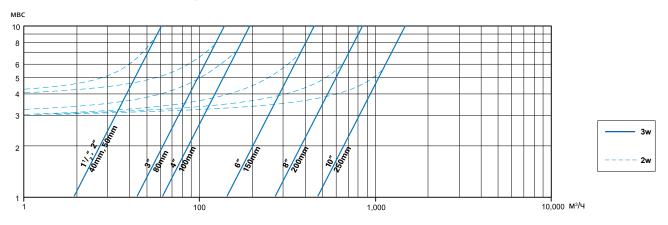
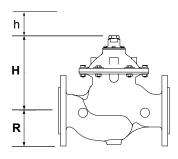

^{*} Приблизительный транспортный вес Ру25
** h – минимальное расстояние для обслуживания

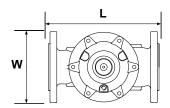
Таблица выбора типоразмеров


Модель 30 (Ру16) / Модель 31 (Ру25)

Размер	клапана	40 (1 ¹ / ₂ ")	50 (2")	65 (2 ¹ / ₂ ")	80 (3")	100 (4")	150 (6")	200 (8")	250 (10")	300 (12")	350 (14")	400 (16")	450 (18")	500 (20")	600 (24")	700 (28")	800 (32")
Макс. рекомендог для длительной р		25	40	40	100	160	350	620	970	1400	1900	2500	3100	3600	5600	7600	8135
Минимальный ре расход м³/ч	комендованный								<1 :	м ³ /ч							
Прямые клапа	Прямые клапана																
Коэффициент расхода:	Kv	43	43	43	103	167	407	676	1160	1600	1600	3000	3150	3300	7000	7000	7000
Коэффициент по [безразмерный]	тери давления К	2.2	5.4	15.4	6.7	5.6	4.8	5.5	4.5	5	9	3.8	6	5.9	4.2	7.8	13.4
Угловые клапа	ана																
Коэффициент расхода:	Kv	60	60		140	190	460	770	1310	Для расчета потери давления полностью открытым клапаном используйте следующие уравнения:							
Коэффициент по [безразмерный]	тери давления К	1.3	2.8		3.3	4.3	4.3	4.2	3.6	H (Bar) = $\left(\frac{Q\left[M^{3/4}\right]}{KV}\right)^{2}$ H = K $\frac{V^{2}}{2a}$							

Графики потерь давления Модель 30/31 (прямые)


Модель 30А/31А (угловые)



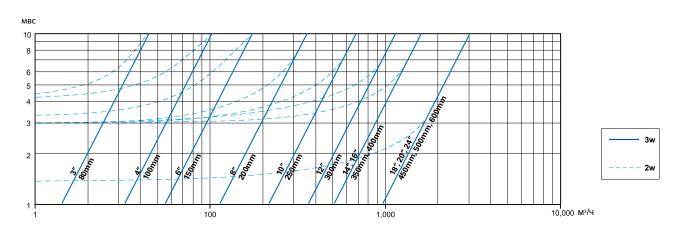
Размеры и веса Модель 32 (Ру25)

Прямые фланцевые клапана

_		400 (411)	450 (0%)	202 (211)	050 (40!!)	1
Размер клапана	80 (3")	100 (4")	150 (6")	200 (8")	250 (10")	
	MM	ММ	ММ	ММ	ММ	
L	310	350	480	600	730	
Н	185	232	250	334	395	
h**	107	156	170	220	275	
W	200	235	300	360	425	
R	100	120	150	182	215	
Вес, кг*	15	27	51	92	171	
Объем управл. камеры, л	0.1	0.3	0.7	1.5	4.3	
Размер клапана	300 (12")	350 (14")	400 (16")	450 (18")	500 (20")	600 (24")
	ММ	ММ	ММ	ММ	ММ	MM
L	850	980	1100	1200	1250	1259
Н	545	635	635	855	855	1311
h**	400	480	480	600	600	245
W	489	610	628	850	850	881
R	245	260	314	310	357.5	459
Вес, кг*	330	510	544	945	980	1030
Объем управл.						

Таблица выбора типоразмеров

Размер клапа	на	80 (3")	100 (4")	150 (6")	200 (8")	250 (10")	300 (12")	350 (14")	400 (16")	450 (18")	500 (20")	600 (24")
Макс. рекомендованны для длительной работ	60	145	225	510	970	1400	1900	2030	3100	3600	3600	
Минимальный рекомендованный расход м³/ч <1 м²/ч												
Коэффициент расхода:	Kv	43	115	165	345	663	1160	1600	1600	3000	3000	3000

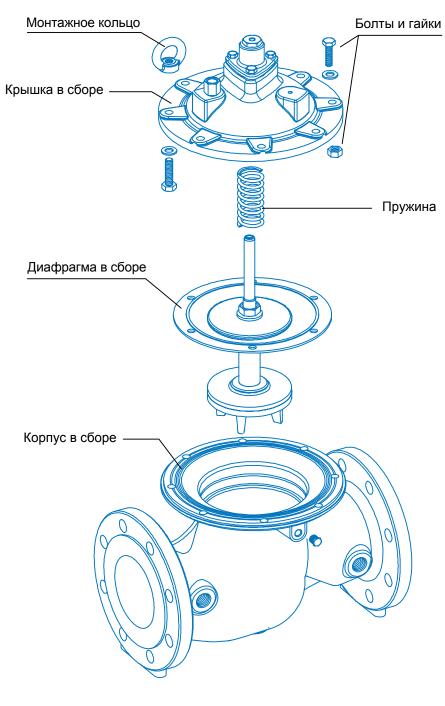


^{*} Приблизительный транспортный вес Ру25

^{**} h – минимальное расстояние для обслуживания Стандарты подключения (для Ру16 или Ру25) ISO 2084, 2441, 5752 ANSI B16, AS2129, JIS B22

Графики потерь давления

Модель 32 (прямые)



Детали клапана

Дистанционно управляемые и с электронным управлением

EL Клапана, управляемые соленоидами

Трехходовой соленоидный клапан, включаемый переменным электрическим током или пульсом постоянного тока, открывает или закрывает главный клапан. Стандартно поставляется "нормально закрытый" клапан. "Нормально открытый" поставляется по требованию. Электрический контроль возможен для большинства функций управления, перечисленных ниже, поставляется по заказу.

ЕС Клапан с электронным управлением

Клапан управляется контроллером "ConDor" производства Дорот. Удобный для пользователя контроллер обеспечивает высокоточное выполнение всех возможных функций и их комбинацию. "ConDor" позволяет изменять установочные параметры дистанционно и автоматически, управлять началом/окончанием работы по времени, контролировать количество воды. Дает много других уникальных возможностей.

Регулировка давления

PR Клапана для снижения давления

Поддерживают постоянное давление на выходе, независимо от колебаний давления и расхода на входе. Если давление на выходе превышает заданное (при прекращении разбора воды), клапан герметично закрывается.

Клапан 30-PR имеет стандарт UL для систем пожаротушения. Дополнительные возможности клапанов снижения давления:

PRM(T2) Клапан, работающий по 2 заданным значениям давления в определенные часы.

PRM(FM) С электронным управлением, меняет давление в соответствии с текущим расходом.

PRM(HyMod) С гидравлическим управлением, меняет давление в соответствии с текущим расходом.

PR(D) Пропорциональное снижение давления

PS Клапана для поддержания давления

Поддерживают давление на входе независимо от изменения расхода. Клапан закрывается, если давление на входе падает ниже установленного. Если давление на входе выше установленного, клапан полностью открывается.

Дополнительные возможности клапанов для поддержания давления:

PS(R) Клапана для сброса давления

DI поддержание заданной разности давления

Управление расходом

FR Клапана для управления расходом

Ограничивают расход до установленного уровня независимо от колебаний давления. Клапан полностью открывается, когда расход падает ниже установленного.

FE Закрытие при превышении установленного расхода

Клапан полностью закрывается, когда расход превышает установленный максимум (например, при разрыве трубы). Открытие после этого возможно только вручную.

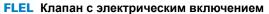
Управление уровнем жидкости

FL Клапан, управляемый поплавком

Главный клапан управляется поплавковым краном, установленном в емкости на максимально требуемом уровне.

Постоянно поддерживает максимально возможный уровень.

Поплавковый кран управляет главным клапаном, закрывая его, когда вода достигает максимального уровня и открывая, когда уровень достигает установленного минимума.


Разность между максимумом и минимумом регулируется.

Монтируется вне емкости ниже уровня воды.

Высокочувствительный пилотный регулятор открывает или закрывает клапан в соответствии со статическим давлением воды.

Разность между максимумом и минимумом регулируется пилотным регулятором.

Монтируется на входе в резервуар на любом уровне. Управляется электрическим поплавком, устанавливаемым внутри резервуара. Клапан закрывается, когда вода достигает максимального уровня и открывается, когда уровень достигает установленного минимума. Разность между максимумом и минимумом регулируется.

AL / PR, FLDI1 / PR, FLDI2 / PR Комбинации управления уровнем и расходом

Монтируется вне емкости ниже уровня воды. Ограничивает расход воды и поддерживает заданные максимальный и минимальный уровни в резервуаре.

AL / PS, FLDI1 / PS, FLDI2 / PS Комбинации управления уровнем и давлением до клапана

Монтируется вне емкости ниже уровня воды. Поддерживает необходимое давление воды в трубопроводе и заданные максимальный и минимальный уровни в резервуаре.

FLDI

H

A A

Управление насосами и предотвращение гидроударов

СУ Обратный клапан

Клапан полностью открыт, когда давление перед ним выше, чем после него. Клапан закрывается, предотвращая поток в обратном напрвлениии.

NS Двухступенчатый обратный клапан с мягкой посадкой

Разработан для предотвращения закрытия обратного клапана с ударом, что часто встречается при наполнении высоко расположенных резервуаров. Открывается при запуске насоса, закрывается в контролируемом темпе при остановке насоса.

ВС Клапан для управления насосом

Защищает от резких изменений давления, возникающих при запуске и остановке насоса.

Электрическое управление плавно открывает кран при запуске насоса и медленно закрывает его перед остановкой насоса.

Клапан работает как плавно закрывающийся обратный клапан, предотвращая обратный поток воды через насос. Дополнительные возможности:

ВС/РЅ Управление насосом и поддержание давления до себя

BC/CD Управление насосом и продленное закрытие для длинных трубопроводов

BC/DI Управление насосом для различных режимов всасывания

DW Клапан для управления глубинными насосами

Устраняет резкие изменения давления, возникающие при запуске и остановке глубинных погружных насосов.

Это клапан сброса давления, монтируемый на отводе главного трубопровода. При запуске насоса клапан медленно закрывается, постепенно повышая давление в сети.

Перед остановкой насоса клапан медленно открывается, снижая давление в сети.

QR Предохранительные клапана для быстрого сброса давления

Клапан открывается немедленно, если давление в трубопроводе превышает безопасный уровень, снижая излишнее давление в сети.

Когда давление нормализуется, клапан плавно закрывается. Темп закрытия регулируется.

RE Защита от гидроударов

Клапан защищает насосные станции от гидроударов, возникающих в результате внезапной остановки насосов. Клапан открывается немедленно при остановке насоса, сбрасывая высокое давление от обратной волны. Когда давление возвращается на статический уровень, клапан медленно закрывается.

Работает также как предохранительный клапан для быстрого сброса давления.

RE/EL Защита от гидроударов с электрическим включением

Монтируется на отводе главного трубопровода после насосов. Защищает насосные станции от гидроударов, возникающих в результате перебоев в электроснабжении. Открывается при пропадании электроснабжения, сбрасывая высокое давление от обратной волны.

SP Предотвращение гидроударов

Уникальный модуль Дорот, который может быть добавлен к любому автоматическому клапану. Предотвращает гидроудары, возникающие при закрытии клапанов, расположенных в конце длинных трубопроводов.

ပ္ထ

M

QR

R

Клапана для систем пожаротушения серии 300 различных модификаций имеют стандарт UL.

Дренчерные клапана

Клапана Дорот могут применяться в системах с электрической, гидравлической или пневматической системой детекторов. Клапана серии 300 Дорот могут приводится в действие как отдельным сигналом, так и их комбинацией. Все аппликации оборудуются рукояткой для ручного включения, могут отключаться автоматически или вручную.

DE/EI

Мониторинговые клапана

Мониторинговые клапана Дорот серии 300 открываются немедленно при получении электрического, гидравлического, пневматического сигнала или при ручном включении. Клапана используют давление в линии для создания максимального усилия и не требуют внешних источников энергии.

Приводятся в действие локально или с удаленного пульта управления.

U-DE/EL

Клапана для снижения давления

Клапана Дорот серии 300 снижают высокое давление на входе в клапан до требуемого на выходе из него независимо от колебаний давления и расхода.

Клапана спроектированы так, что поддерживают после себя постоянное давление при любых расходах.

PR/UL

Защитные клапана для сброса давления

Клапана Дорот серии 300 поддерживают максимально возможное давление в системе пожаротушения и предотвращают его повышение, сбрасывая избыточное давление в резервуар или в атмосферу.

3/NL

Дополнительную информацию по клапанам для систем пожаротушения можно найти в специализированном каталоге.

Мини-пилоты

Для клапанов размером от 20мм до 150 мм $- \frac{3}{4}$ " до 6" Рабочее давление: 25 бар

68-410 - 2-ходовой редукционный пилотный клапан

68-510 - 2-ходовой пилотный клапан поддержания давления до себя

31-10X - 3-ходовой плотный клапан (рабочее давление 16 бар). Многоцелевой: поддержание давления до и после себя.

31-10X 68-510 68-410

Пилотные клапана

Для клапанов размером от 40мм до 600 мм $-1^{1}/_{2}$ " до 24" Рабочее давление: 25 бар

CXPR - 2-ходовой редукционный пилотный клапан

(CXRS – удаленное считывание давления,

CXRD – дифференциальное снижение давления)

CXPS - 2-ходовой пилотный клапан поддержания давления до себя (CXSD дифференциальное поддержание давления)

31-310 - 3-ходовой многоцелевой плотный клапан: поддержание давления до и после себя.

76-200 - 3-ходовой дифференциальный многоцелевой пилот (контроль расхода, дифференциальное поддержание давления)

68-41М - 2-ходовой редукционный пилотный клапан с управлением сжатым воздухом

Высокочувствительные пилотные регуляторы

Для клапанов размером от 40мм до 600 мм - $1^{1}/_{2}$ " до 24" Рабочее давление: 25 бар

70-410 - 2-ходовой дифференциальный редукционный пилотный мини-клапан (контроль расхода и уровня жидкости)

70-110 - 3-ходовой дифференциальный многоцелевой пилот (контроль расхода, дифференциальное поддержание давления и уровня жидкости) с регулируемым дифференциалом

31-10H - 3-ходовой многоцелевой пилот (контроль расхода и уровня жидкости, дифференциальное поддержание давления)

Поплавковые пилотные клапана

Для клапанов размером от 40мм до 600 мм $-1^{1}/_{2}$ " до 24" Рабочее давление: 25 бар

70-200 - Электрический поплавок

70-400 - Модулирующий 2-ходовой металлический поплавок

70-610 - Горизонтальный дифференциальный, 3-ходовой металлический поплавок

70-550 - Вертикальный дифференциальный, 3-х и 4-ходовой металлический поплавок

ПИЛОТНЫЕ КЛАПАНА И АКСЕССУАРЫ

Клапана-реле

Для клапанов размером от 40мм до 600 мм – $1^{1}/_{2}$ " до 24"

Рабочее давление: 25 бар

66-210 3-ходовое / двухпозиционное нормально открытое гидравлическое реле (66-213 нормально закрытое)

66-310 З-ходовое регулируемое гидравлическое реле **28-200** ходовое / двухпозиционное гидравлическое

реле

28-300 3-ходовое / двухпозиционное гидравлическое реле

Промышленные соленоиды

Для клапанов размером от 40мм до 600 мм – $1^{1}/_{2}$ " до 24"

Рабочее давление: в соответствии с проходным

сечением и типом соленоида

Рабочее напряжение (другой е возможно по запросу):

AC: 24V, 110V или 220V DC: 12V или 24V

Защелки 9V, 12V, 24V

B2 2-ходовой NC или NO соленоидный клапан

ВЗ 3-ходовой NC или NO соленоидный клапан

Контрольные фильтры

Самопромывные фильтры из нержавеющей стали, расположены в корпусе клапана и непрерывно промываются потоком воды

Размеры 1/4", 1/2", 1

Внешние формы "Y" из нержавеющей стали

Размеры: ³/₈", ¹/₂"

Внешние большого размера

Автоматические управляющие клапана

Клапана серии 100 Галь - Клапана с уплотнением непосредственно диафрагмой. Используются в системах водоснабжения, водоотведения, в сельском хозяйстве. Исключительно простая конструкция, единственная подвижная часть — собственно диафрагма. Очень низкие потери давления. Диаметры от 20мм до 600 мм (3/4"-24").

Клапана из полиамида, армированного стекловолокном - Используются в теплицах, открытых площадях, в городском озеленении, системах водоподготовки. Не подвержены коррозии. Диаметры от 20мм до 80 мм (3/4"-3").

Серия 500 - Клапана с жестким уплотнением Y-образной формы. Этот компактный клапан изготавливается с применением композитных материалов. Имеет широкий выбор функций управления расходом и давлением. Диаметры от 40мм до 200 мм (1,5"-8").

Клапана для промыва фильтров - Специально спроектированные клапана для промыва фильтров обратным потоком. Изготавливаются из чугуна и полиамида, армированного стекловолокном. Однокамерное или двухкамерное управление.

Клапана из uPVC - Изготовлены ПВХ, устойчивого к солнечной радиации. Уплотнение непосредственно диафрагмой. Для воды с агрессивными веществами и для подземного монтажа с трубопроводами из ПВХ. Диаметры от 80мм до 150 мм (3"-6").

Механическая арматура

Межфланцевые поворотные заслонки с мягким уплотнением. Диаметры от 50мм до 600 мм (2"-24").

Обратные клапана. Поворотные, рычажные, дисковые двухлепестковые.

Клиновые задвижки - с обрезиненным или металлическим клином.

Клапана для автоматического удаления воздуха

Пластиковые воздушные клапана - Кинетические, автоматические и комбинированные из полипропиленовых материалов. Диаметры от 15мм до 50 мм (1/2"-2").

Металлические воздушные клапана - Кинетические, комбинированные, для чистой воды и для сточных вод. Изготавливаются из высокопрочного чугуна, морской бронзы, нержавеющей стали и других материалов. Имеют возможность противоударной добавки. Диаметры от 50мм до 300 мм (2"-12").

Счетчики воды

Многопроточные и однопроточные, поливные, счетчики Вольтман, объемные счетчики

Надежность

Сотни компаний, работающих в промышленности, строительстве и сельском хозяйстве во всем мире выбрали новаторские и проверенные на практике технологии, разработанные Дорот.

С момента своего создания в 1946 году, мы выводим на рынок продукцию с непрерывными инновациями, бескомпромиссным совершенством и твердой приверженностью своим клиентам. Дорот считают настоящим партнером своих клиентов в разработке, проектировании, внедрении и обслуживании систем управляющих и регулирующих клапанов.

